Rich Internet Application

Rich Internet Applications (RIA) are web applications that have the features and functionality of traditional desktop applications. RIA's typically transfer the processing necessary for the user interface to the web client but keep the bulk of the data (i.e maintaining the state of the program, the data etc) back on the application server.

RIA's typically:

•
run in a web browser, or do not require software installation 

•
run locally in a secure environment called a sandbox 
History of RIAs
The term "Rich Internet Application" was introduced in a Macromedia whitepaper in March 2002, though the concept had been around for a number of years before that under different names such as:

•
Remote Scripting, by Microsoft, circa 1998 

•
X Internet, by Forrester Research in October 2000 

•
Rich (Web) Clients, 

•
Rich Web Application 

Comparison to standard web applications

Traditional web applications centered all activity around a client-server architecture with a thin client. Under this system all processing is done on the server, and the client is only used to display static (in this case HTML) content. The biggest drawback with this system is that all interaction with the application must pass through the server, which requires data to be sent to the server, the server to respond, and the page to be reloaded on the client with the response. By using a client side technology which can execute instructions on the client's computer, RIAs circumvent this slow loop. This difference is somewhat analoguous to the difference between "terminal and mainframe" and Client-server/Fat client approaches.It should be noted that Internet standards have evolved slowly and continually over time to accommodate these techniques, so it is hard to draw a strict line between what constitutes an RIA and what does not. Usually what can be done in an RIA is limited by the capabilities of the system used on the client.
Benefits
Because RIAs take advantage of the client's CPU, they offer real-time user-interface options that are not possible with the standard HTML widgets available to browser-based Web applications. This richer functionality may include anything that can be implemented in the system being used on the client side (see below), including "drag and drop," using a slider to change data, calculations that happen on the client (e.g., an insurance rate calculator) and do not need to be sent back to the server, etc. High interactivity of RIA applications (when compared to standard web applications) may approach that of fat clients.
There are also performance benefits:

· The computing resources of both client and server are more balanced, so the server need not be the workhorse that it is with a web application. This frees server resources and allows the same hardware to handle more sessions concurrently. 

· The network traffic may also be significantly reduced because the client can be more intelligent (e.g. application specific optimization) than a web browser in determining what it needs to send back and forth to the server. Thus, it takes less time to transfer any single request or response because of two reasons - they are smaller and overall network load is lower. 
Shortcomings and restrictions associated with RIAs are:

•
Because RIA applications run within a sandbox they have restricted access to system resources. When access to expected/assumed resources is disabled RIA applications may fail to operate correctly. 

•
JavaScript or another scripting language is often required. If this is disabled the RIA will not function properly, if at all. 

•
Depending on the client-side programming language or method used (e.g. JavaScript), the client code may run at comparatively low speed. This limits what functionality can be migrated from the server. 

•
Although it does not have to be installed, additional client-side intelligence of RIA applications needs to be delivered by the server to the client. While much of this is usually automatically cached it needs to be transferred at least once. Depending on the size and type of delivery it may be unpleasantly long. 
The current status of RIA development and adoption

RIAs are still in the early stages of development and user adoption. There are a number of restrictions and requirements that remain:

•
Browser adoption: Many RIA applications require modern web browsers in order to run. Advanced JavaScript engines must be present in the browser as RIAs use techniques such as XMLHTTPRequest for client-server communication, and DOM Scripting and advanced CSS techniques to enable the rich user interface. 

•
Web standards: Differences between web browsers can make it difficult to write an RIA that will run across all major browsers. The consistency of the Java platform, particularly after Java 1.1, makes this task much simpler for RIAs written as Java applets. 

•
Development tools: Due to a lack of adequate development tools they are currently significantly harder to develop. 

•
Accessibility concerns: Additional interactivity may require technical approaches that limit applications' accessibility. 

•
User adoption: Users expecting standard web applications may find that some accepted browser functionality (such as the "Back" button) may have somewhat different or even undesired behaviour. 
Justifications

Although developing applications to run in a web browser is a much more limiting, difficult, and intricate a process than developing a regular desktop application, the efforts are often justified because:

•
installation is not required -- updating and distributing the application is an instant, automatically handled process 

•
users can use the application from any computer with an internet connection, and usually regardless of what operating system that computer is running 

•
web-based applications are generally less prone to viral infection than running an actual executable 

•
as web usage increases, computer users are becoming less willing to go to the trouble of installing new software if a browser-based alternative is available 

This last point is often true even if this alternative is slower or not as feature-rich. A good example of this phenomenon is webmail.
Methods and techniques

JavaScript

The first major client side language and technology available with the ability to run code and installed on a majority of web clients was JavaScript. Although its uses were relatively limited at first, combined with layers and other developments in DHTML it has become possible to piece together an RIA system without the use of a unified client-side solution. Ajax is a new term coined to refer to this combination of techniques and has recently been used most prominently by Google for projects such as Gmail and Google Maps. However, creating a large application in this framework is very difficult, as many different technologies must interact to make it work, and browser compatibility requires a lot of effort. In order to make the process easier, several Ajax libraries have been developed.

The "rich" in "Rich Internet Applications" may also suffer from an all-JavaScript approach, because you are still bound by the media types predictably supported by the world's various deployed browsers -- video will display in different ways in different browsers with an all-JavaScript approach, audio support will be unpredictable, realtime communications, whiteboarding, outbound webcams, opacity compositing, socket support, all of these are implemented in different ways in different browsers, so all-JavaScript approaches tend to cluster their "richness" around text refreshes and image refreshes.

Macromedia Flash Player

Macromedia (now owned by Adobe Systems) is one vendor in this area. Their Shockwave browser extension, and later their Flash Player, have provided browsers with text-refresh abilities since the mid-1990s, and Macromedia invented the term "Rich Internet Applications" in 2002.

The Macromedia Flash technology includes Flash Media Server, Flash Remoting, Central, Breeze and Flex, all of which are rendered in viewers' differing browsers via the Macromedia Flash Player. Macromedia claims 98% of Internet users have some version of the Flash plug-in, and major services such as Google, Video, Hollywood and automakers all use these abilities as a matter of course. The Flash Player is supported by many browsers (including Internet Explorer, Mozilla Firefox and Opera), and is distributed as a free browser plug-in. The Player runs across various versions of the Windows and Macintosh operating systems, on several major Linux varieties, on set-top boxes and mobile phones, on ambient signage and automobile consoles. The Flash Player is essentially a widely-supported virtual machine that executes byte-code found in files following the SWF format.
ActiveX Controls

Embedding ActiveX controls into HTML is a very powerful way to develop rich Internet applications, however they are only guaranteed to run properly in Internet Explorer. At the time of this writing, the Macromedia Flash Player for Internet Explorer is implemented as an ActiveX control for Microsoft environments, as well as in multi-platform Netscape Plugin wrappers for the wider world. Only if corporations have standardized on using Internet Explorer as the primary Web Browser, is ActiveX per se a good choice for building corporate applications.
Java applets

Java applets run in standard HTML pages and generally start automatically when their web page is opened with a modern web browser. Java applets have access to the screen (inside an area designated in its page's HTML) , speakers, keyboard and mouse of any computer their web page is opened on, as well as access to the internet, and provide a sophisticated environment capable of real time applications.

Java applications

Java Web Start allows desktop Java applications to utilize the client workstation. It also allows the application to break free of the web browser. This approach offers the richest functionality without the limitations of HTML or the specific web browser in use.

User Interface languages

As an alternative to HTML/XHTML new user interface markup languages can be used in RIAs. For instance, the Mozilla Foundation's XML-based user interface markup language XUL - this could be used in RIAs though it would be restricted to Mozilla-based browsers, since it is not a de facto or de jure standard. The W3Cs Rich Web Clients Activity[1] has initiated a Web Application Formats Working Group whose mission includes the development of such standards
Other techniques

RIAs could use XForms to enhance their functionality.

Using XML and XSLT along with some XHTML, CSS and JavaScript can also be used to generate richer client side UI components like data tables that can be resorted locally on the client without going back to the server. Mozilla and Internet Explorer browsers both support this.
References

1. ^ W3C (2006). W3C Rich Web Clients. w3c.org. 

2. ^ W3C (2006). Web Application Formats Working Group. w3c.org. 

This is a list of Rich Internet Applications.

· 24SevenOffice a web-based ERP/CRM solution 

· Flickr by Ludicorp (now Yahoo!), photo management 

· Gmail by Google, e-mail 

· Google Maps by Google, interactive maps 

· Virtual Earth by Microsoft, interactive maps 

· WinLIKE a Web Window Manager 

· Zimbra, Open Source Enterprise Collaboration 

